Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Ecotoxicol Environ Saf ; 270: 115880, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38159342

ABSTRACT

Patients with end stage kidney disease treated by dialysis (ESKDD) process dialysis sessions to remove molecules usually excreted by kidneys. However, dialysis therapy could also contribute to endocrine disruptors (ED) burden. Indeed, materials like dialyzer filters, ultrapure dialysate and replacement fluid could exposed ESKDD patients to Bisphenol A (BPA) and chlorinated derivatives of BPA (ClxBPAs). Thus, our aim was to compare BPA and ClxBPAs exposure between ESKDD patients, patients with stage 5 chronic kidney disease (CKD5) not dialyzed and healthy volunteers. Then we describe the impact of a single dialysis session, according to dialysis modalities (hemodialysis therapy (HD) versus online hemodiafiltration therapy (HDF)) and materials used with pre-post BPA and ClxBPAs concentrations. The plasma levels of BPA and four ClxBPAs, were assessed for 64 ESKDD patients in pre and post dialysis samples (32 treated by HD and 32 treated by HDF) in 36 CKD5 patients and in 24 healthy volunteers. BPA plasma concentrations were 22.5 times higher for ESKDD patients in pre-dialysis samples versus healthy volunteers (2.208 ± 5.525 ng/mL versus 0.098 ± 0.169 ng/mL) (p < 0.001). BPA plasma concentrations were 16 times higher for CKD5 patients versus healthy volunteers, but it was not significant (1.606 ± 3.230 ng/mL versus 0.098 ± 0.169 ng/mL) (p > 0.05). BPA plasma concentrations for ESKDD patients in pre-dialysis samples were 1.4 times higher versus CKD5 patients (2.208 ± 5.525 ng/mL versus 1.606 ± 3.230 ng/mL) (p < 0.001). For healthy volunteers, ClxBPAs were never detected, or quantified while for CKD5 and ESKDD patients one ClxBPAs at least has been detected or quantified in 14 patients (38.8%) and 24 patients (37.5%), respectively. Dialysis therapy was inefficient to remove BPA either for HD (1.983 ± 6.042 ng/mL in pre-dialysis versus 3.675 ± 8.445 ng/mL in post-dialysis) or HDF (2.434 ± 5.042 ng/mL in pre-dialysis versus 7.462 ± 15.960 ng/mL in post dialysis) regarding pre-post BPA concentrations (p > 0.05). The same result was observed regarding ClxBPA analysis. Presence of polysulfone in dialyzer fibers overexposed ESKDD patients to BPA in pre-dialysis samples with 3.054 ± 6.770 for ESKDD patients treated with a polysulfone dialyzer versus 0.708 ± 0.638 (p = 0.040) for ESKDD patients treated without a polysulfone dialyzer and to BPA in post-dialysis samples with 6.629 ± 13.932 for ESKDD patients treated with a polysulfone dialyzer versus 3.982 ± 11.004 (p = 0.018) for ESKDD patients treated without a polysulfone dialyzer. This work is to our knowledge the first to investigate, the impact of a dialysis session and materials used on BPA and ClxBPAs plasma concentrations and to compare these concentrations to those found in CKD5 patients and in healthy volunteers.


Subject(s)
Benzhydryl Compounds , Kidney Failure, Chronic , Phenols , Polymers , Renal Insufficiency, Chronic , Sulfones , Humans , Dialysis , Renal Dialysis , Kidney Failure, Chronic/therapy , Renal Insufficiency, Chronic/therapy
2.
Environ Int ; 178: 108100, 2023 08.
Article in English | MEDLINE | ID: mdl-37481953

ABSTRACT

Endocrine disrupting chemicals (EDCs) were defined as "an exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes adverse health effects". These compounds are mainly eliminated by the renal route. However, patients with end-stage kidney disease treated by dialysis (ESKDD) can no longer eliminate these EDCs efficiently. Furthermore, EDCs exposure could occur via leaching from medical devices used in dialysis therapy. As a result, ESKDD patients are overexposed to EDCs. The aims of this study were to summarize EDCs exposure of ESKDD patients and to evaluate the factors at the origin of this exposure. To handle these objectives, we performed a literature review. An electronic search on PubMed, Embase and Web of science databases was performed. Twenty-six studies were finally included. The EDCs reported in these studies were Bisphenol A (BPA), Bisphenol S (BPS), Bisphenol B (BPB), Nonylphenol, Di(2-ethylhexyl) phthalate (DEHP), Di-n-butyl phthalate (DBP), and Butylbenzyl phthalate (BBP). Regarding the environment of dialysis patients, BPA, BPB, BPS, DEHP, DBP and nonylphenol have been found. Environmental exposure affects EDCs blood levels in ESKDD patients who are overexposed to BPA, BPS, BPB and DEHP. For ESKDD patients, dialyzers with housing in polycarbonate and fibers in polysulfone seem to overexpose them to BPA. Regarding dialysis therapy, peritoneal dialysis seems to decrease patient exposure vs hemodialysis therapy, and hemodiafiltration therapy seems to reduce this exposure vs hemodialysis therapy. Regarding DEHP, levels tend to increase during dialysis and when DEHP plasticizer is used in PVC devices. Finally, in the European Union a regulation on medical devices was adopted on 5 April 2017 and has been applied recently. This regulation will regulate EDCs in medical devices and thereby contribute to reconsideration of their conceptions and, finally, to reduction of ESKDD patients' exposure.


Subject(s)
Diethylhexyl Phthalate , Endocrine Disruptors , Humans , Endocrine Disruptors/adverse effects , Renal Dialysis , Phenols , Dibutyl Phthalate , Benzhydryl Compounds/adverse effects
3.
Blood Purif ; 52(3): 309-318, 2023.
Article in English | MEDLINE | ID: mdl-36215951

ABSTRACT

INTRODUCTION: Online hemodiafiltration (OL-HDF) and hemodialysis (HD) using high-performance membranes such as adsorptive, medium cut-off (MCO), and super high-flux (SHF) dialyzers have been implemented to enhance the removal of middle molecules (MM). The aim of this study was to compare the efficacy of different dialysis strategies and dialyzers on small solutes and MM reduction ratio (RR) and mass removal. METHODS: We performed a prospective study in 8 HD patients. Each patient underwent 9 dialysis sessions: seven sessions on HD using either Theranova 500™, Elisio 21H™, Renak PS-2.0W™, Filtryzer BK-2.1F™, Vie 21X™, TS-2.1UL™ or FDY 210-GW™ dialyzers and two sessions on OL-HDF using Elisio 21H™ or Renak PS-2.0W™ dialyzers. RESULTS: Urea mass removal and RR were similar between all dialysis strategies. The lowest beta2-microglobulin RR was achieved with Filtryzer BK-2.1F™ HD (p < 0.05). Compared to Elisio 21H™ HD, Renak PS-2.0W™ OL-HDF produced higher beta2-microglobulin mass removal (181 ± 46 vs. 317 ± 161 mg, p < 0.05). Theranova 500™ HD, Vie 21X™ HD, FDY 210-GW™ HD, Elisio 21H™ OL-HDF, and Renak PS-2.0W™ OL-HDF induced higher RR for kappa and lambda FLC, as compared to Elisio 21H™ HD and Filtryzer BK-2.1F™ HD (p < 0.05). Renak PS-2.0W™ OL-HDF achieved higher kappa FLC mass removal compared to Elisio 21H™ HD (563 ± 515 vs. 141 ± 47 mg, p < 0.01) and to Renak PS-2.0W™ HD (563 ± 515 vs. 153 ± 25 mg, p < 0.05). Albumin loss varied from 0.02 ± 0.05 to 7.6 ± 3.8 g/session with Elisio 21H™ HD and Renak PS-2.0W™ OL-HDF, respectively. Compared to all other strategies, Renak PS-2.0W™ OL-HDF induced a significantly higher albumin loss (p < 0.05). CONCLUSION: This study confirms that albumin loss and removal of MM are similar using conventional Elisio 21H™ OL-HDF, MCO-HD, and SHF type V dialyzers. Although Renak PS-2.0W™ OL-HDF provides high performance for MM depuration, this protein-permeable dialyzer should not be used in OL-HDF because of excessive albumin loss.


Subject(s)
Hemodiafiltration , Humans , Uremic Toxins , Prospective Studies , Renal Dialysis , Albumins
4.
Membranes (Basel) ; 12(5)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35629769

ABSTRACT

The use of medium cut-off (MCO) polyarylethersulfone and polyvinylpyrrolidone blend membrane is an emerging mode in hemodialysis. Recent studies have shown that MCO membranes exhibit a middle high molecular weight uremic toxin clearance superior to standard high flux hemodialysis. We conducted a systematic literature review and meta-analysis of randomized controlled trials to investigate whether MCO membranes efficiently increase the reduction ratio of middle molecules, and to explore the potential clinical applications of MCO membranes. We selected articles that compared beta 2-microglobulin (ß2M), kappa free light chain (κFLC), lambda free light chain (λFLC), interleukin-6 (IL-6), and albumin levels among patients undergoing hemodialysis. Five randomized studies with 328 patients were included. The meta-analysis demonstrated a significantly higher reduction ratio of serum ß2M (p < 0.0001), κFLC (p < 0.0001), and λFLC (p = 0.02) in the MCO group. No significant difference was found in serum IL-6 levels after hemodialysis. Albumin loss was observed in the MCO group (p = 0.04). In conclusion, this meta-analysis study demonstrated the MCO membranes' superior ability to clear ß2M, κFLC, and λFLC. Serum albumin loss is an issue and should be monitored. Further studies are expected to identify whether MCO membranes could significantly improve clinical outcomes and overall survival.

5.
Hemodial Int ; 26(3): 314-322, 2022 07.
Article in English | MEDLINE | ID: mdl-35014175

ABSTRACT

Low-molecular weight heparins (LMWH) are widely used for preventing clotting during hemodialysis (HD). Although injection in the venous blood line is recommended to avoid initial loss of LMWH through the dialyzer, LMWH is still frequently administered in the arterial blood line at the start of dialysis. This study aimed to compare the safety and efficacy of the same enoxaparin dose administered through the venous blood line or arterial blood line. We also evaluated antifactor Xa (aXa) activity according to the injection route and dialysis modalities: high-flux (HF) HD, medium cut-off (MCO) HD, and online hemodiafiltration (OL-HDF). Forty-three patients were studied over 18 consecutive dialysis sessions using a fixed enoxaparin dose (20 or 40 mg), first administered through the arterial blood line bolus and then through the venous blood line for another 18 sessions. Compared to arterial blood line administration, venous blood line bolus resulted in a significant increase in median post-dialysis aXa activity: 0.16 (0.1-0.6) IU/ml versus 0.31 (0.1-1.3) IU/ml, respectively, p = 0.006. After arterial blood line bolus of 40 mg enoxaparin, median post-dialysis aXa activity was significantly lower with OL-HDF compared to HF-HD: 0.14 (0.1-0.35) versus 0.32 (0.15-0.49), p = 0.02. A trend for lower clotting within lines and bubble trap using venous blood line bolus was observed. In conclusion, venous blood line enoxaparin injection is safe in OL-HDF patients. However, in HF-HD and MCO-HD, venous blood line injection of 40 mg enoxaparin may increase overdosing risk. Thus, aXa activity should be monitored in HF-HD and MCO-HD patients at risk of bleeding and/or on vitamin K antagonists and careful surveillance is required when administering a 40 mg enoxaparin dose through the venous blood line route.


Subject(s)
Hemodiafiltration , Thrombosis , Anticoagulants , Enoxaparin , Heparin, Low-Molecular-Weight , Humans , Molecular Weight , Renal Dialysis/methods , Thrombosis/prevention & control
7.
Kidney Int ; 99(3): 570-580, 2021 03.
Article in English | MEDLINE | ID: mdl-33440212

ABSTRACT

Symptomatic multiple myeloma is commonly complicated by acute kidney injury through various mechanisms. The most frequent is the precipitation of monoclonal free light chains with uromodulin in the distal tubules, defining light chain cast nephropathy. Early diagnosis and identification of the cause of acute kidney injury are required for optimizing management and avoiding chronic kidney injury that strongly affects quality of life and patient survival. In light chain cast nephropathy, often manifesting with severe acute kidney injury, renal recovery requires urgent intervention based on vigorous rehydration, correction of precipitating factors, and efficient anti-plasma cell chemotherapy to rapidly reduce the secretion of nephrotoxic free light chains. Currently, the association of the proteasome inhibitor bortezomib with high-dose dexamethasone is the standard regimen in newly diagnosed patients. The addition of another drug such as cyclophosphamide or an immunodulatory agent may improve free light chain response but raises tolerance concerns in frail patients. Further studies are warranted to confirm the role of anti-CD38 monoclonal antibodies, whose efficacy and tolerance have been documented in patients without renal impairment. Despite controversial results from randomized studies, recent data suggest that in patients with light chain cast nephropathy and acute kidney injury requiring dialysis, the combination of chemotherapy with free light chain removal through high-cutoff hemodialysis may increase renal response recovery rates. Kidney biopsy may be helpful in guiding management and assessing renal prognosis that appears to depend on the extent of cast formation and interstitial fibrosis/tubular atrophy. Because of continuous improvement in life expectancy of patients with multiple myeloma, renal transplantation is likely to be increasingly considered in selected candidates.


Subject(s)
Acute Kidney Injury , Multiple Myeloma , Acute Kidney Injury/diagnosis , Acute Kidney Injury/etiology , Acute Kidney Injury/therapy , Bortezomib , Humans , Immunoglobulin Light Chains , Multiple Myeloma/complications , Multiple Myeloma/diagnosis , Multiple Myeloma/therapy , Quality of Life , Renal Dialysis
9.
Chemosphere ; 242: 125236, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31896187

ABSTRACT

Bisphenol A (BPA) is a well-known ubiquitous chemical found in polycarbonate, polysulfone and epoxy resins, used in mass production for many consumer products. BPA exhibits endocrine disruptor properties that can potentially induce adverse health effects. In aquatic environments, it can react with chlorine to produce chlorinated derivatives (ClxBPAs). ClxBPAs exhibit oestrogenic activity 10 to 105 times higher than BPA itself. Assessing human exposure to endocrine disrupting chemicals is mandatory to assess health risk. Blood, as well as urine matrix, are commonly used to perform human biomonitoring. We therefore developed, fully validated and applied a method based on Ultra High Performance Liquid Chromatography couples to a Triple Quad Mass Spectrometer to determine BPA, monochlorobisphenol A (MCBPA), dichlorobisphenol A (DCBPA), trichlorobisphenol A (TCBPA) and tetrachlorobisphenol A (TTCBPA) in human blood plasma. The European Medicines Agency guidelines for bioanalytical method validation have been applied. Precision and trueness of the method were <15% at medium and high levels of quality control and <20% at the limits of quantification (LOQs). The LOQs were settled at 0.1 ng/mL for BPA, 0.02 ng/mL for TTCBPA and 0.005 ng/mL for MCBPA, DCBPA, and TCBPA. The analytical method was applied to ten patients suffering from end stage renal disease. BPA was quantified in all ten patients while MCBPA, DCBPA and TTCBPA were determined in three and TCBPA in four. In conclusion, we have successfully developed a highly sensitive method to determine BPA and ClxBPAs in human plasma. Thanks to this method, for the first time, we could demonstrate ClxBPAs occurrence in human blood.


Subject(s)
Benzhydryl Compounds/blood , Phenols/blood , Chlorine , Chromatography, High Pressure Liquid/methods , Endocrine Disruptors/analysis , Endocrine Disruptors/blood , Endocrine Disruptors/metabolism , Halogenation , Humans , Tandem Mass Spectrometry/methods
10.
Nephrol Dial Transplant ; 35(2): 328-335, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31578564

ABSTRACT

BACKGROUND: Accumulation of middle-weight uraemic toxins in haemodialysis (HD) patients results in increased morbidity and mortality. Whether medium cut-off HD (MCO-HD) improves removal of middle-weight uraemic toxins remains to be demonstrated. METHODS: This cross-over prospective study included 40 patients randomly assigned to receive either 3 months of MCO-HD followed by 3 months of high-flux HD (HF-HD), or vice versa. The primary endpoint was myoglobin reduction ratio (RR) after 3 months of MCO-HD. Secondary endpoints were the effect of MCO-HD on other middle-weight toxins and protein-bound toxins, and on parameters of nutrition, inflammation, anaemia and oxidative stress. RESULTS: Compared with HF-HD, MCO-HD provided higher mean RR of myoglobin (36 ± 8 versus 57 ± 13%, P < 0.0001), beta2-microglobulin (68 ± 6 versus 73 ± 15%, P = 0.04), prolactin (32 ± 13 versus 59 ± 11%, P < 0.0001), fibroblast growth factor 23 (20 ± 21 versus 41 ± 22%, P = 0.0002), homocysteine (43 ± 7 versus 46 ± 9%, P = 0.03) and higher median RR of kappa [54 (48-58) versus 70 (63-74)%, P < 0.0001] and lambda free light chain (FLC) [15 (9-22) versus 44 (38-49)%, P < 0.0001]. Mean ± SD pre-dialysis levels of beta2-microglobulin (28.4 ± 5.6 versus 26.9 ± 5.1 mg/L, P = 0.01) and oxidized low-density lipoprote (6.9 ± 4.4 versus 5.5 ± 2.5 pg/mL, P = 0.04), and median (interquartile range) kappa FLC [145 (104-203) versus 129 (109-190) mg/L, P < 0.03] and lambda FLC [106 (77-132) versus 89 (62-125) mg/L, P = 0.002] were significantly lower. Mean albumin levels decreased significantly (38.2 ± 4.1 versus 36.9 ± 4.3 g/L, P = 0.004), without an effect on nutritional status as suggested by unchanged normalized protein catabolic rate and transthyretin level. CONCLUSIONS: Compared with HF-HD, MCO-HD provides higher myoglobin and other middle molecules RR and is associated with moderate hypoalbuminemia. The potential benefits of this strategy on long-term clinical outcomes deserve further evaluation.


Subject(s)
Hemodiafiltration/instrumentation , Hemodiafiltration/methods , Renal Dialysis/instrumentation , Renal Dialysis/methods , Toxins, Biological/metabolism , Aged , Cross-Over Studies , Dialysis , Female , Humans , Immunoglobulin lambda-Chains/metabolism , Male , Nutritional Status , Prospective Studies , Toxins, Biological/isolation & purification
11.
Biomolecules ; 9(9)2019 08 22.
Article in English | MEDLINE | ID: mdl-31443526

ABSTRACT

The health safety conditions governing the practice of online hemodiafiltration (OL-HDF) do not yet incorporate the risks related to the presence of endocrine disruptors such as bisphenol A (BPA). The aim of this study was to assess, for the first time, the exposure to BPA but also to its chlorinated derivatives (ClxBPA) (100 times more estrogenic than BPA) during OL-HDF. We demonstrated that BPA is transmitted by the different medical devices used in OL-HDF: ultrafilters, dialysis concentrate cartridges (and not only dialyzers, as previously described). Moreover, BPA has been found in dialysis water as well as in ultrapure dialysate and replacement fluid due to contamination of water coming from municipal network. Indeed, due to contaminations provided by both ultrafilters and water, high levels of BPA were determined in the infused replacement fluid (1033 ng.L-1) from the beginning of the session. Thus, our results demonstrate that dialysis water must be considered as an important exposure source to endocrine disruptors, especially since other micropollutants such as ClxBPA have also been detected in dialysis fluids. While assessment of the impact of this exposure remains to be done, these new findings should be taken into account to assess exposure risks in end-stage renal disease patients.


Subject(s)
Benzhydryl Compounds/adverse effects , Benzhydryl Compounds/chemistry , Halogenation , Hemodiafiltration , Kidney Failure, Chronic/therapy , Phenols/adverse effects , Phenols/chemistry , Dose-Response Relationship, Drug , Humans
12.
Blood ; 133(6): 576-587, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30578255

ABSTRACT

Monoclonal immunoglobulin deposition disease (MIDD) is a rare complication of B-cell clonal disorders, defined by Congo red negative-deposits of monoclonal light chain (LCDD), heavy chain (HCDD), or both (LHCDD). MIDD is a systemic disorder with prominent renal involvement, but little attention has been paid to the description of extrarenal manifestations. Moreover, mechanisms of pathogenic immunoglobulin deposition and factors associated with renal and patient survival are ill defined. We retrospectively studied a nationwide cohort of 255 patients, with biopsy-proven LCDD (n = 212) (including pure LCDD [n = 154], LCDD with cast nephropathy (CN) [n = 58]), HCDD (n = 23), or LHCDD (n = 20). Hematological diagnosis was monoclonal gammopathy of renal significance in 64% and symptomatic myeloma in 34%. Renal presentation was acute kidney injury in patients with LCCD and CN, and chronic glomerular disease in the other types, 35% of whom had symptomatic extrarenal (mostly hepatic and cardiac) involvement. Sequencing of 18 pathogenic LC showed high isoelectric point values of variable domain complementarity determining regions, possibly accounting for tissue deposition. Among 169 patients who received chemotherapy (bortezomib-based in 58%), 67% achieved serum free light chain (FLC) response, including very good partial response (VGPR) or above in 52%. Renal response occurred in 62 patients (36%), all of whom had achieved hematological response. FLC response ≥ VGPR and absence of severe interstitial fibrosis were independent predictors of renal response. This study highlights an unexpected frequency of extrarenal manifestations in MIDD. Rapid diagnosis and achievement of deep FLC response are key factors of prognosis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/immunology , Kidney Diseases/pathology , Paraproteinemias/pathology , Aged , Cohort Studies , Female , Follow-Up Studies , Humans , Kidney Diseases/drug therapy , Kidney Diseases/immunology , Male , Middle Aged , Paraproteinemias/drug therapy , Paraproteinemias/immunology , Prognosis , Survival Rate
13.
Clin Nephrol ; 89 (2018)(1): 50-56, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28853700

ABSTRACT

BACKGROUND: Recent data suggest that the use of medium cut-off (MCO) dialyzers in hemodialysis (HD) promotes greater clearance and reduction ratio (RR) for myoglobin and other large-sized molecules than on-line hemodiafiltration (ol-HDF), but its effects on ß2-microglobulin are not clear. We compared RR and clearances of small and middle-sized molecules between high-flux ol-HDF and MCO (Theranova) dialyzer in HD (MCO-HD) as well as nutritional parameters. MATERIALS AND METHODS: We retrospectively analyzed 10 patients treated first with ol-HDF who were thereafter switched to MCO-HD over a 1-year period. Three dialysis sessions in each 6-month period were examined. We calculated RR and clearance of small and middle-sized molecules. RESULTS: There was no significant difference between ol-HDF and MCO-HD for median serum albumin and prealbumin level, mean KT/V, mean urea and creatinine RR, mean ß2-microglobulin (81 ± 5 vs. 81 ± 6%, p = 0.72) and myoglobin (60 ± 9% vs. 61 ± 7%, p = 0.59), RR or clearances. CONCLUSION: The use of MCO (Theranova) dialyzer in HD produces similar removal of urea, creatinine, ß2-microglobulin and myoglobin as does ol-HDF, with good tolerance profile and without modification of nutritional status.
.


Subject(s)
Hemodiafiltration , Renal Dialysis , Creatinine/analysis , Hemodiafiltration/instrumentation , Hemodiafiltration/methods , Hemodiafiltration/statistics & numerical data , Humans , Renal Dialysis/instrumentation , Renal Dialysis/methods , Renal Dialysis/statistics & numerical data , Retrospective Studies , Urea/analysis , beta 2-Microglobulin/analysis
14.
Int J Pharm ; 505(1-2): 115-21, 2016 May 30.
Article in English | MEDLINE | ID: mdl-27012980

ABSTRACT

Bisphenol A (BPA) is an endocrine disruptor found in food containers and plastic beverages and also in medical devices such as dialyzers. The aim of this study is while taking into account the BPA originating in medical devices and the water used in dialysate production, to provide the first published investigation of overall potential exposure to BPA during hemodialysis treatment in patients suffering from end-stage renal disease. BPA concentration in water (at each step of purification treatment) and in dialysate and BPA leaching from dialyzers were determined using solid-phase extraction coupled to ultra-high-performance-liquid chromatography tandem mass spectrometry. We have corroborated the hypothesis that a significant amount of BPA may migrate from dialyzers and also demonstrated that BPA is provided by the water used in dialysate production (8.0±5.2ngL(-1) on average) and by dialysis machine and dialysate cartridges, leading to dialysate contamination of 22.7±15.6ngL(-1) on average. Taking into account all the sources of BPA contamination that may come into play during a hemodialysis session, the highest exposure could reach an estimated 140ng/kg b.w./day for hemodialyzed patients, directly available for systemic exposure. Finally, BPA contamination should be taken into account as concerns both the medical devices commonly used in hemodialysis and purified water production systems.


Subject(s)
Benzhydryl Compounds/isolation & purification , Dialysis Solutions/chemistry , Endocrine Disruptors/isolation & purification , Phenols/isolation & purification , Renal Dialysis/instrumentation , Benzhydryl Compounds/analysis , Chromatography, High Pressure Liquid/methods , Dialysis Solutions/standards , Endocrine Disruptors/analysis , Phenols/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...